

Safety Shut-Off Valve S 50

Product information

ΕN

Subject to modifications! Reprint prohibited!

Table of Contents

Application, Characteristics, Technical Data	4
Application	4
Characteristics	4
Type of models / Options (see page 10)	4
Technical data	5
Structure and function	6
Sectional view	7
SSV setpoint spring table - control device	8
Dimensions, Connection, and Weight	9
Dimensional drawing	9
Dimensions and weight	9
Connection of the measuring lines and breather lines	9
Types of Models / Options	10
Design	11
Properties of Gases	11
Order Data	12
Notes	13
Contact	14
Notes	16

Observe the following publications in relation to **ATTENTION** installation, start-up and maintenance: DVGW - work sheets G 491 and G 600 Operating and Maintenance Instructions S50

List of abbreviations and formula symbols

AC	Accuracy class	p_{dso}	Upper SSV response pressure	$W_{ds o}$	Upper spring adjustment range
AG_{\circ}	Upper response pressure	$p_{ds u}$	Lower SSV response pressure		(SSV)
	group	$p_{f,max}$	Maximum closing pressure	$W_{ds u}$	Lower spring adjustment range
AG_{u}	Lower response pressure	PS	Maximum allowable pressure		(SSV)
	group	p _u	Inlet pressure	Δр	Pressure difference from
BV	Breather valve	Q	Standard volumetric flow rate		inlet pressure to
GPR	Gas pressure regulator	RE	Diaphragm assembly		outlet pressure
HDS	High-pressure spindle	RSD2	Throttle valve	Δp_{wo}	Min. re-engagement difference
$K_{_{G}}$	Valve flow rate coefficient	SSV	Safety shut-off valve	***	between upper
р	Pressure	SRV	Safety relief valve		response pressure and
p_d	Outlet pressure	SG	Closing pressure group		normal operating pressure
p_{df}	SRV closing pressure	$t_{\scriptscriptstyleGas}$	Gas inlet temperature	Δp_{wu}	Min. re-engagement difference
p _{do}	SRV opening pressure	VS	Valve seat		between lower
p _{ds}	Setpoint of the	W_d	Outlet gas velocity		response pressure and
45	response pressure	$W_{_{_{\mathrm{U}}}}$	Inlet gas velocity		normal operating pressure
				ρ_{n}	Gas density

Application, Characteristics, Technical Data

Application

Safety shut-off valve (SSV), direct-acting (operating without auxiliary power), for systems acc. to DVGW work sheets G 491 (A) and G 600 (A) (TRGI)

Can be used for the gases defined in DVGW work sheet G 260 / G 262 and neutral non-aggressive gases. (other gases on request)

Characteristics

- Integral pressure-tight version (IS)
- High flow rate capacity
- Open-air model

Type of models / Options (see page 10)

- with AV breather valve
- with electric position indicator SSV 'Closed' via reed contact
- with SSV electromagnetic remote release when power is applied or in case of power failure
- with SSV manual release
- oxygen model
- hydrogen model

Response pressure groups

Lower response pressure $AG_{_{\mathrm{u}}}$ in		Upper response pressure group $AG_{_{0}}$ in	
command area w _{dsu}	$AG_{_{\cup}}$	command area w _{dso}	AG_{\circ}
10 mbar to 50 mbar	20	50 mbar to 500 mbar	10
> 50 mbar	10	> 500 mbar	5

Technical data

Type S 50

Model Integral pressure-tight (IS)

Max. allowable pressure PS 3 bar

Nominal width Rp 1" (DN 25), Rp 1½" (DN 40), Rp 2" (DN 50)

(NPT thread on request)

Standard volumetric flow rate $\mathbf{Q}_{n,max}$ Rp 1": 100m³/h, Rp 1½": 300m³/h, Rp 2": 300m³/h

Type of connection Internal thread acc. to EN 10226-1

Material

Housing / actuator housing/

Control device housing Al cast alloy DIN EN 1706-AC-42100 ST6

Corrosivity category DIN EN ISO 12944-2

C1 to C5-I without additional coatings

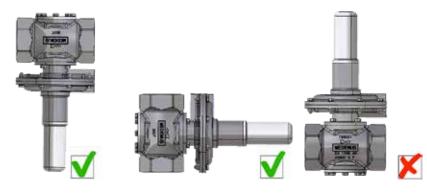
C5-M an epoxy resin coating is recommended (see page10)

Temperature range, Class 2 -20°C to +60°C

(operating/ambient temperature)

Function, strength and tightness DIN EN 14382
CE mark acc. to PED/ PIN number CE-0085-BS0420

Ex protection The mechanical parts of the device do not have any


potential ignition sources of their own and therefore do not fall within the scope

of ATEX 95 (94/9/EC). Electrical components fitted to the device

comply with the ATEX requirements.

Preferred installation position

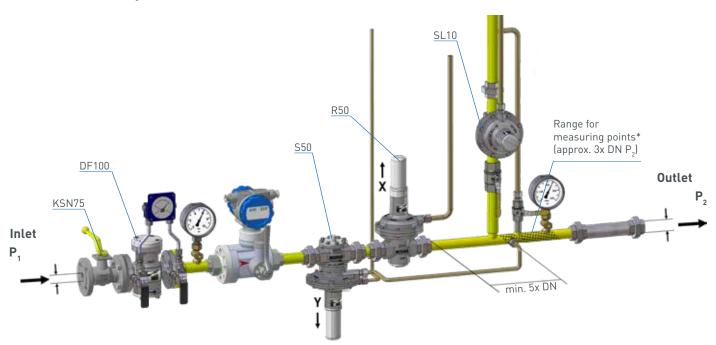
The safety shut-off valves (SSV) shall be installed in the pipeline preferably in horizontal position. For all nominal widths, the direction of flow is indicated by an arrow on the housing.

Installation upside down only after consultation with Medenus GmbH

Note: Observe the following documents in relation to installation, start-up, and maintenance:

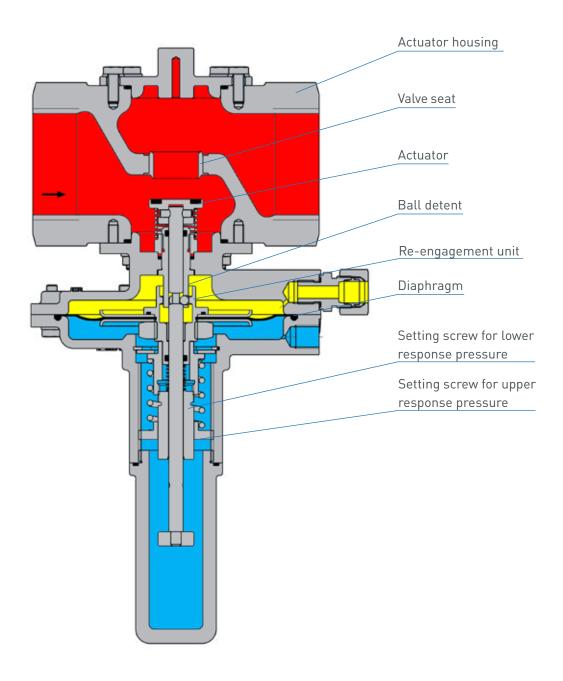
- DVGW work sheets G 491 and G 600
- Operating and Maintenance Instructions S50

Structure and function


The safety shut-off valve S 50 shuts off the gas flow when the outlet pressure in the regulation section exceeds or falls below a certain response pressure. To this end, the outlet pressure to be monitored is passed on to the SSV control device via a separate measurement line. As a function of the change in pressure, the diaphragm in the control device is raised or lowered. When the outlet pressure in the regulation section falls below the lower switch-off point or exceeds the upper switch-off point, the switch socket connected to the SSV diaphragm will move to the corresponding disengaging position, the balls of the engaging mechanism will release the SSV screw spindle, and the closing spring will press the SSV valve plate against the valve seat. The SSV actuator shuts off the gas flow gas-tight.

The SSV can only be opened by hand and engaged in the open position. To do so, the outlet pressure at the measuring point must be lowered below the upper response pressure or raised above the lower response pressure by at least the re-engaging differential amount (Δp) .

The SSV can, except where otherwise stipulated in specific national legislation, be used in either functional class A (with diaphragm rupture protection) or B (without diaphragm rupture protection).

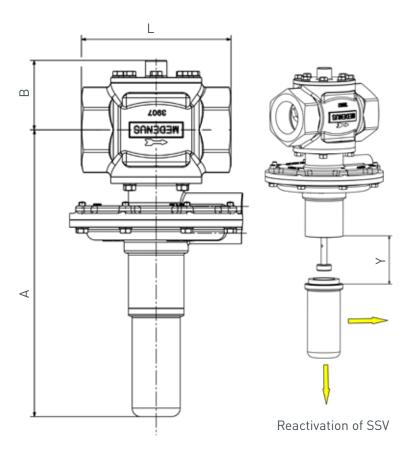

There is also the option of using a remote display for the SSV position "CLOSED" and a manual and remote release when power is applied or in case of power failure.

Installation example

*) Recommended max. velocity at the measurement line port 25 m/s

Sectional view

SSV setpoint spring table - control device


		S50: Rp 1"-2"								
			М)**			MD	-R**		
			to W _{ds o} 3	300 mbar			to W _{ds o} 3	500 mbar		
Sprin	g data	Lower respon	nse pressure	Upper respor	nse pressure	Lower respo	nse pressure	Upper respor	ise pressure	
Spring no.	Color [RAL]	W _{ds u} [mbar]	Δp _{wu} [mbar]	w _{dso} [mbar]	Δp _{wo} [mbar]	W _{ds u} [mbar]	Δp _{wu} [mbar]	w _{dso} [mbar]	Δp_{wo} [mbar]	
FE 900	1028	1 - 8	20			35 - 50	50			
FE 901 VA	2002	6 - 17	20			50 - 80*	50			
FE 902 VA	6010	12 - 24*	20			70 - 105	50			
FE 903	5015	22 - 40	20			100 - 140	50			
FE 904 VA	9005	30 - 50	20			110 - 160	50			
FE 905 VA	9010	45 - 70	20			150 - 205	50			
FE 906	4002	65 - 100	20			200 - 300	50			
FD 910	1028			20 - 40	20			90 - 125	50	
FD 911	2002			35 - 70	20			120 - 210	50	
FD 912	6010			65 - 110	20			200 - 330	50	
FD 913	5015			100 - 160	20			285 - 460	50	
FD 914	9005			150 - 235	20			450 - 680	50	
FD 915	9010			225 - 300	20			640 - 1040	50	
FD 916	3020							1030 - 1480	50	
FD 917	5010							1450 - 2200	50	
FD 918	9006							1900 - 3500	50	
FD 919	4002									

^{*)} Standard spring

^{**)} If the control device is set up simultaneously for the upper and lower set pressure (functional class A) the difference between the setpoints of the upper and lower response pressure (p_{dso} and p_{dsu}) and the outlet pressure pd must be at least " Δp_{wo} + 10%" or " Δp_{wu} + 10%". Otherwise it cannot be guaranteed that the control device will re-engage.

Dimensions, Connection, and Weight

Dimensional drawing

Dimensions and weight

Nominal width Dimensions	DN 25 Rp 1"	DN 40 Rp 1 ¹ / ₂ "	DN 50 Rp 2"
A [mm]	261	268	268
B [mm]	59	65	65
L [mm]	100	140	160
Y [mm]	100	100	100
Weight [kg]	2.5	3.5	4.0

Connection of the measuring lines and breather lines

Nominal width	Measurement line	Breather line				
DN 025 Rp 1"	0	* (
DN 040 Rp 1½"	Connection* for: tube 12 x 1.5 (thread G 1/4)					
DN 050 Rp 2"	12 X 1.0 (0	m caa o 17-47				

Types of Models / Options

AV breather valve

The AV breather valve is used as for securing the installation room against inadmissible escape of gas from diaphragm comparator compartments of safety shut-off valves. In case of a defect, the impermissible escape of gas into the surrounding atmosphere is limited to a maximum of 30l/h (air).

It also serves as a substitute for an expensive and complex installation of breather lines.

(Option not available for hydrogen version H₂)

Reed contact

Reed contacts are used to monitor the position (closed or open position) of the safety shut-off valve via remote display.

SSV manual and remote release

The direct-acting safety solenoid valve is used as electromagnetic remote release for closing the safety shut-off valve when power is applied or in case of power failure.

Epoxy resin coating in RAL colors

To protect the gas pressure regulator from external influences, starting from a corrosivity category C5-M we recommend an epoxy resin coating.

Types of models

Oxygen version 0.

Hydrogen version H₂ (with helium leak test)

10

© 11.2023 01

Design

Checking the gas velocities

$$W = 380 \bullet Q_n / (DN^2 \bullet p_{abs})$$

Note: The factor 380 refers to an operating gas temperature from approx. 15°C to 20°C. For other temperatures, the velocity must be corrected as follows: $w_{corr} = w \cdot (t_{gas} + 273.15) / 290$

Recommended max. gas velocity at the inlet flange: 50 - 70 m/s Lower value for redirections upstream of the SSV

Example:

Inlet and outlet nominal width of the pipeline according to the selected device: 25 mm

$$Q_{2} = 70 \text{ m}^{3}/\text{h}$$

$$p_{_{11}}/(p_{_{d}}) = 5 \text{ bar}$$

$$w_u = 380 \cdot 70 / (25^2 \cdot 6) = 7.1 \text{ m/s}$$

Determining the upper response pressure

Outlet pressure P _d (mbar)	Upper response pressure W _{dso}
≤200	P _d +100 mbar
>200 - <800	P _d x 1.5
>800 - <1600	P _d x 1.3
>1600	P _d +500 mbar

Pressure loss formula

Calculation pressure absolute $(p_u + 1 \text{ bar}) = p_{u.abs}$

$$\Delta p = \left(\frac{Q_n}{K_G}\right)^2 \times \frac{1000}{p_{u,abs}}$$

Properties of Gases

- for natural gas ($\rho_n = 0.83 \text{ kg/m}^3$; $t = 15^{\circ}\text{C}$)
- f natural gas conversion factor- L

Gas	f	Hs,n [kWh/m³]	Gas	f	Hs,n [kWh/m³]
Acetylene	0.84	16.25	Sewage gas	0.84	
Ammonia	1.04	4.83	Carbon monoxide	0.81	3.51
Butane	0.55	37.23	Carbon dioxide	0.65	-
Chlorine	0.51	-	Air	0.80	-
Landfill gas	approx. 0.80		Methane	1.08	11.06
Natural gas L	1.00	9.77	Propane	0.64	28.03
Natural gas H	1.03	11.45	Oxygen	0.76	-
Ethane	0.78	19.55	Sulphur dioxide	0.53	-
Ethylene	0.97	16.516	Nitrogen	0.81	-
Mine gas	(30% CH4)	0.86	Hydrogen	3.04	13.43
Helium	2.15	-			

Order Data

Example:Safety shut-off valve:

\$50/Rp1"/MD-R/left/BV/R/H/WAZ/So

	Order code:	S50	Rp1"	MD-R	-	left	BV	N	Н	WAZ	So
Order selection	Designation										
Туре											
S50	S50	S50									
DN - Nominal width	Table p. 9		Rp1"								
SSV											
with control device MD	MD										
with control device MD-R	MD-R			MD-R							
SSV functional class											
A	-				-						
В	В										
Direction of flow											
Right (from left to right)	-										
Left (from right to left)	left					left					
SSV valve accessories	Fig. p. 10										
without SSV valve accessories	-										
Breather valve	BV						BV				
Electrical position indicator, SSV "Closed"	Fig. p. 10										
without electrical position indicator	-										
with , via Reed contact	R							R			
SSV release	Fig. p. 10										
without release	-										
with manual release	Н								Н		
with electromagnetic remote release, when power is supplied	SG										
with electromagnetic	SA										
remote release, in case of power failure											
Acceptance test certificate to EN 10204/3.1											
without acceptance test certificate	-										
with acceptance test certificate	WAZ									WAZ	
Special model	So										So

⁻ Coating with epoxy resin in RAL colors

⁻ Oxygen model

DN - Nominal width									
Туре	Rp 1"	Rp 1½"	Rp 2"						
S50	Χ	Χ	Χ						

In every selection group, only one option can be selected in each case.

Contact

Management ALEXANDER CHRISTIANI

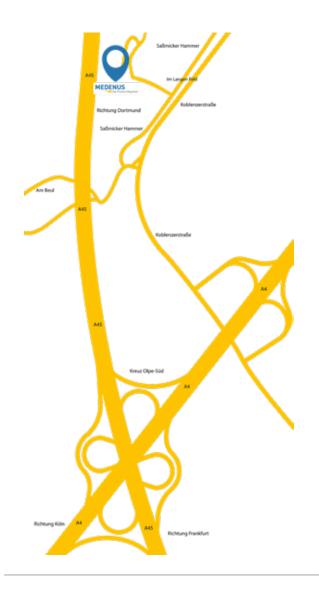
Phone: +49 (0) 2761 / 82788-18 Mail: a.christiani@medenus.de

Technical Inside Sales Department MINDAUGAS PECKAITIS

Phone: +49 (0) 2761 / 82788-23 Mail: m.peckaitis@medenus.de

Head of Inside Sales Department MANUEL SCHEPP

Phone: +49 (0) 2761 / 82788-20 Mobile phone: +49 (0) 170 / 6355309 Mail: m.schepp@medenus.de


Inside Sales Department SEBASTIAN HUCKESTEIN

Phone: +49 (0) 2761 / 82788-11 Mail: s.huckestein@medenus.de

Inside Sales Department STEFANIE MÜLLER

Phone: +49 (0) 2761 / 82788-13 Mail: s.mueller@medenus.de

If you want to know more about solutions from MEDENUS for the gas industry, please contact your local contact person or go to our internet site at www.medenus.de

Trade representation worldwide medenus.de/de/kontakt.html

MEDENUS

Gas-Druckregeltechnik GmbH

Im Langen Feld 3 D-57462 Olpe

Phone: +49 (0)2761 82788-0 Fax: +49 (0)2761 82788-9 Mail: info@medenus.de Internet: www.medenus.de

THE MEDENUS PLUS

10 reasons for good business relations

- Consultancy expertise and quality standards developed over decades
- Broad and proven standard range of feedback controllers
- Modern, fast and efficient production for series products and for individual orders
- Customer-specific design of pressure regulators and vacuum regulators and special designs
- Guaranteed deadline compliance with a delivery deadline guarantee
- 6. Fast response time in all matters
- 7. Sufficiently large parts storage for production and spare parts
- 8. Customer-specific theory & practice training courses
- Modular design right across the entire product range to facilitate optimized handling of spare parts
- 10. 100% Made in Germany

In the download area of our homepage, this document is available in different languages. You can use the following QR codes and links to go directly to this document in your language.

Deutsch:

http://medenus.de/files/upload/downloads/S50/Pi_S50_de.pdf

English:

http://medenus.de/files/upload/downloads/S50/Pi_S50_en.pdf

